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Abstract
High precision modeling of space-charge effects, together with accurate treatment of single-

particle dynamics, is essential for designing future accelerators as well as optimizing the perfor-

mance of existing machines. We describe Synergia, a high-fidelity parallel beam dynamics sim-

ulation package with fully three dimensional space-charge capabilities and a higher order optics

implementation. We describe the computational techniques, the advanced human interface, and

the parallel performance obtained using large numbers of macroparticles. We also perform code

benchmarks comparing to semi-analytic results and other codes. Finally, we present initial re-

sults on particle tune spread, beam halo creation, and emittance growth in the Fermilab booster

accelerator.

PACS numbers:
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I. INTRODUCTION

In recent years, accurate modeling of beam dynamics in high-current low energy proton
synchrotrons has become necessary because of new machines under consideration for future
applications, such as the High Energy Physics neutrino program, and the need to optimize
the performance of currently operating machines, such as the Spallation Neutron Source
or the Fermilab Booster. These machines are characterized by high currents and require
excellent control of beam losses, thus space-charge initiated halo formation is an essential
component of their modeling. In order to obtain accurate predictions for realistic conditions
of operation, single-particle optics and self-consistent multi-particle effects must be combined
in a single simulation code.

Several computer simulations of space-charge effects in circular accelerators using particle-
in-cell techniques have been developed [1–3]. These simulations have emphasized the trans-
verse dynamics while using a less rigorous approach for the longitudinal dynamics. Syner-
gia [4] is a package for state-of-the-art simulation of linear and circular accelerators with
a fully three-dimensional treatment of space charge, and the ability to use arbitrary order
maps for the single-particle optics modeling.

Synergia is designed to be a general-purpose tool with an interface that is accessible
to accelerator physicists who are not experts in simulation. Space-charge calculations are
computationally intensive, typically requiring the use of parallel computers. The implemen-
tation of Synergia is fully parallel, including the particle tracking and space-charge modules.
The code itself is a hybrid system based on previously developed accelerator physics codes.
Synergia includes enhancements to these codes as well as new integration and interface mod-
ules. There is at least one other example of an accelerator code framework which reuses
existing codes [5]. Synergia is unique in that it is designed to provide a high level frame-
work specifically for studying 3D multi-particle dynamics in a massively parallel computing
environment.

Development of Synergia has been funded by the United States Department of Energy’s
SciDAC Accelerator Science and Technology Project. One of the goals of the project is to
create distributable codes. Since compiling hybrid code can be a complicated task which is
further complicated by the diverse set of existing parallel computing environments, Synergia
includes a build system that allows it to be compiled and run on various platforms without
requiring the user to modify the code and/or build system.

In this paper we give a brief description of the components used in Synergia as well as the
details involved in combining them into a single product. We pay close attention to the build
system, in keeping with the “distributable” goal mentioned above. We also describe how we
have taken advantage of Python to give us a flexible human user interface with very little
effort. In addition, we present a few Synergia applications. First, we compare with analytic
calculations and predictions from other codes to verify the accuracy of our implementation.
Then, in order to demonstrate the capabilities of the code in a realistic scenario, we present
results from simulations of the Fermilab Booster [6].

II. COMPONENTS

The two packages at the core of Synergia are IMPACT [8] and the mxyzptlk/beamline
libraries [9]. We have added glue code and a human-interface wrapper to these packages,
together with necessary extensions of their modules, to form the Synergia package.
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A. IMPACT

Synergia uses IMPACT for its parallel particle-in-cell (PIC) implementation, rf modeling
and, most importantly, parallel space-charge calculations. IMPACT contains a suite of
three-dimensional Poisson solvers that are invoked in the middle of each step of a split-
operator-based model. We split the Hamiltonian into two pieces,

H = Hext +Hsc, (1)

where Hext is the Hamiltonian for the external beamline element part of the problem and
Hsc is the Hamiltonian for the space-charge part of the problem. In our case the latter is
simply proportional to the scalar potential, with a proportionality constant that varies as 1

γ2

to account for the azimuthal magnetic field associated with the longitudinal beam current.
Since the scalar potential depends only on coordinates and not momenta, the effect of Hsc

is a change in momentum, i.e. a space-charge kick, which we denote by Msc. The effect
of Hext is described by the transfer map for the associated beamline element, Mext. In the
split-operator approach, an approximation to the effect of the full Hamiltonian, H, accurate
through second order in the step size h, is given by

M(h) =Mext(h/2)Msc(h)Mext(h/2) +O(h3). (2)

The problem of calculating beam propagation including space-charge effects therefore fac-
torizes into the problem of calculating the two effects one at a time and combining them as
above. A key advantage of this splitting, as opposed to one that separates the Hamiltonian
into pieces involving only coordinates and only momenta, is that in our approach the rapid
variation of the external fields is separated from the more slowly varying space-charge fields.
In other words, we can take small steps to accurately resolve rf cavity fields, magnetic fringe
fields, etc., needed to compute external transfer maps, but the separation between space-
charge kicks can be large (typically a few tens of kicks per betatron wavelength). Without
the factorization above, we would be forced to calculate the space-charge effects on the time
scale set by the magnetic optics effects, which would be computationally prohibitive.

We have extended the original IMPACT in several ways. IMPACT now includes an injec-
tion module, allowing multi-turn injection modeling. We have extended the beam generation
module to include a six-dimensional Gaussian distribution with general correlations. (See
Section III B 4.) We have also improved the memory management, allowing for an arbi-
trary number of beamline elements. Finally, we have enhanced the IMPACT particle data
structure to allow following individual particles throughout the simulation and calculating
particle tunes.

B. mxyzptlk/beamline libraries

The mxyzptlk/beamline package is a set of C++ libraries covering a wide range of acceler-
ator physics computations. Even though the original code is over 10 years old, the libraries
are written in a modern style, including real objects with encapsulation and well-considered
interfaces. The package includes basic toolkit, a set of useful utility classes such as Vector,
Matrix, etc., beamline, objects for modeling elements of a beamline, mxyzptlk, classes for
automatic differentiation and differential algebra, and physics toolkit, a set of classes for
analysis and computation.
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FIG. 1: Synergia components and their relation to outside inputs.

A desirable feature of the mxyzptlk/beamline package for our purposes is the ability to
read accelerator descriptions in the MAD8 language [10]. Synergia passes a MAD8 file and
lattice name to beamline which returns transfer maps for an arbitrary number of lattice
slices. The MAD8 parser in beamline is limited to processing accelerator lattice descriptions
since the Synergia interface is much more flexible than the MAD8 command language. In
a generic Synergia run lattice elements from MAD8 files can be combined in arbitrary ways
and even mixed with native IMPACT/Synergia elements. Synergia also takes advantage
of mxyzptlk/beamline’s arbitrary-order transfer maps. The current implementation utilizes
first- and second-order maps, but generalization to arbitrary orders is planned for the near
future.

III. SYNERGIA

Synergia is the combination of IMPACT, the mxyzptlk/beamline libraries, glue code to get
the two packages talking to each other, and a user interface wrapper providing a straight-
forward, yet powerful, human interface. Figure 1 shows the relationship between Synergia
components, MAD8 files, and analysis tools.

A. Build System

Portability has been a major design concern in creating Synergia. We rely on multiple
components written in multiple languages. While using multiple components allows us to
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quickly put together a powerful package, it also creates a configuration management problem.
Multiple-language issues are particularly problematic because calling conventions vary from
platform to platform. We solve the multiple language part of the problem by writing all
of the inter-language wrapper code in terms of macros that can be redefined for various
platforms. We solve configuration management problem by incorporating a modern build
system based on the GNU Autotools to provide consistent builds on all platforms.

In principle, building Synergia is as simple as executing “./configure && make && make

install” in the mxyzptlk directory followed by “./configure && make” in the Synergia
directory. In practice, many options to configure are available. The two principles we have
followed in constructing the build system are (1) modifying the source (including Makefiles)
should never be necessary, and (2) all options should come with reasonable defaults. To
date, Synergia builds without modifications on Linux systems using either the Portland
Group F90 compiler or the Intel F90 compiler, g++ or Intel CC, and either the MPICH or
LAM implementations of the Message Passing Interface (MPI). Synergia also builds without
modifications on AIX, using XL Fortran, Visual Age C++ and POE.

B. Human Interface

The user-level interface to Synergia consists of a set of Python classes that wrap the
low-level interfaces to the code. To run Synergia, the user writes a short Python script
utilizing these classes. Example script excerpts are shown in Figures 2 and 3. The use of
Python has several advantages: There is no specialized syntax to learn. A user familiar with
Python will be able to understand the entire interface easily. A user unfamiliar with Python
will be able to copy an example script and modify it with little difficulty. Although most
examples will only use Python trivially, the full power of the language is available should it
be needed. Last, but not least, the use of an existing scripting language greatly simplifies the
implementation, minimizing both the development time and the probability for introducing
bugs.

1. Job Description

Every Synergia job is a simple Python script. Synergia provides the class
Impact_parameters as an interface to the internal parameters of IMPACT, including input
beam, energy, space-charge parameters, etc. The accelerator lattice can be defined using
elements from an external MAD8 file.

Synergia provides a simple matching module to generate matched beams, utilizing lin-
ear optics calculations from mxyzptlk/beamline for lattice function determination. We also
provide an interface to our Octave utilities package that generates a matched beam in the
presence of space charge by solving the r.m.s. envelope equations.

2. Job Creation and Submission

Synergia jobs can be arbitrarily complex. Typically, the user will want to run several
different jobs varying only a few of the many input parameters. Synergia provides several
facilities to assist the user in creating, submitting and managing simulation runs.
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ip = impact_parameters.Impact_parameters()

ip.processors(4,16)

ip.space_charge_BC("trans finite, long periodic round")

ip.input_distribution("6d gaussian")

mad_file = "booster.mad"

mad_line = "booster"

energy = myopts.get_value("energy")

(alpha_x, beta_x, alpha_y, beta_y) = \

madcalc.twiss_initial(mad_file,mad_line)

# Set horizontal parameters based on beam width measurement

width_x = myopts.get_value("xwidth")

eps_x = width_x**2/beta_x

(width_xprime, r_x, emittance) = \

matching.match_twiss_width(width_x,alpha_x,beta_x)

ip.x_params(sigma = width_x, lam = width_xprime * pz)

# Set vertical parameters so that emittance_horizontal == emittance_vertical

(width_y, width_yprime, r_y) = \

matching.match_twiss_emittance(emittance, alpha_y, beta_y)

ip.y_params(sigma = width_y, lam = width_yprime * pz)

FIG. 2: Example excerpt of a Synergia Python script showing lattice description from MAD8 file

and beam matching utilizing Synergia’s matching module.

numinjturns = myopts.get_value("numinjturns")

numturns = myopts.get_value("numturns")

x_offset= 0; y_offset= 0; phase_offset=0

output_num = 0

for turn in range(0,numturns):

ip.add(impact_elements.External_element(

kicks=96, steps=10, radius=0.04,

mad_file_name=mad_file, beamline_name=mad_line))

if myopts.get_value("sample"):

output_num=output_num+1

ip.add(impact_elements.Output_element("out%02d.dat" % output_num,

sampleperiod))

if turn < numinjturns:

ip.add(impact_elements.Injection_element(2,ip.particles_val,

x_offset,y_offset,phase_offset))

my_synergia = synergia.Synergia(ip,sys.argv,synergia.options)

my_synergia.prepare_run(myopts.get_value("dirname"))

FIG. 3: Example excerpt of a Synergia Python script specifying a simulation with multiple injection

turns utilizing basic Python.
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A Python module options provides a simple method to write scripts accepting command-
line arguments for Synergia and user-defined parameters. When a Synergia job script is
run, the command-line options for that job are automatically recorded in a manner so that
they can be edited and/or reinvoked. Synergia also records all job parameters in a human-
readable description file.

Synergia automatically generates batch system submission scripts based on a user-
supplied template. Several example templates are provided, including templates for single-
processor machines, multi-processor machines, the PBS batch system and more. Optionally,
jobs can be defined to run on remote machines. Synergia generates scripts to export the
input files to the remote machine, submit the job, and retrieve the files from the remote
machine once the job is finished.

3. Diagnostics

A number of diagnostics are provided by default during the simulation run. In addition,
we provide tools to allow users to analyze simulated data after a simulation has completed.
The standard diagnostic utilities are evaluated at each split-operator step and include cal-
culations of the second, third and fourth moments of all six degrees of freedom, two-, four-,
and six-dimensional emittances, and all pairwise correlations for beam components.

For post-processing, we provide the ability to dump the entire beam, or a sampled subset
of the beam, at any simulation step. Files can be dumped in plain text or HDF5 format [11].
Each particle is saved along with a unique tag so that individual particles can be tracked
throughout the simulation. We provide tools for rearranging a series of particle dumps into
individual tracks, both for diagnostic purposes and calculating particle tunes. The output
format of the particle information dumps can be easily interfaced to visualization packages
such as OpenDX [12]. An example of such visualization of a FNAL Booster simulation is
shown in Figure 4.

4. Distributions with general correlations

Synergia can generate Gaussian beams with arbitrary two-component correlations. Gen-
eration of random distributions with finite statistics leads to statistical errors in the moments
of the generated distributions. We use, typically, O(106), macroparticles to simulate O(1012)
real particles. The statistical errors in the simulation are therefore an artifact of the sim-
ulation only. We correct for these errors at the level of two-component correlations in the
following procedure.

We want to generate a set of random vectors {r} such that

〈rj〉 = r̄j (3)

and
〈rjrk〉 = Cjk, (4)

where r̄j and Cjk are given. A typical application would be a beam with no offset (r̄j = 0)
and Cjk chosen to create a matched beam. We start by generating a finite set of (nominally)
uncorrelated random vectors {ρ}. These vectors will have first and second moments

ρ̄j ≡ 〈ρj〉 (5)
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FIG. 4: OpenDX visualization of a three dimensional histogram of particle density of a FNAL

Booster simulation.

and
Xjk ≡ 〈ρjρk〉. (6)

In the limit of infinite statistics, Xjk → δjk. Finite effects cause deviations from this limit,
which will introduce small, but unphysical, deviations from the desired distribution. In
order to correct for these effects, we use the transformation

rj = Ajk(ρk − ρ̄k) + r̄j, (7)

Where
C = GGT , (8)

X = HHT , (9)

and
A = GH−1. (10)

The resulting set of vectors {r} will have the correct first and second moments, with no
error contribution due to finite statistics.

C. Multi-turn injection

Synergia provides an injection module to allow modeling of multi-turn injection in a
completely transparent manner. The injection module generates additional macro-particles
according to a given distribution. The total beam current represented by these macro-
particles is a parameter. An injection “element” can be placed anywhere between beamline
elements in a given lattice, thus multi-turn injection can be simulated by simply including
such an element in a loop. (See Figure 3). In our implementation, both the number of
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macro-particles and the beam current increase with any subsequent use of the injection
module. To allow for injection painting, the injection module includes in its argument list
vertical, horizontal, and longitudinal phase offsets for the center of the beam distribution.

IV. PARALLEL PERFORMANCE

We have run benchmarks of our code on four different clusters under a variety of config-
urations. Our benchmark is a simulation of a single revolution of the FNAL Booster (see
Section V.) The simulation included 2.7 million particles undergoing 100 space-charge kicks
on a 65×65×65 grid.

Three of the clusters are Linux clusters: lqcd [18], heimdall [19] and Alvarez [20]. Our
benchmarks include a sampling of the range of currently-available networking options for
Linux: 100 Mbit Ethernet, Gigabit Ethernet and Myrinet 2000. We also compared the
performance of the Intel fortran compiler (ifc) with the Portland Group fortran compiler
(pgf90). For the former, the code was compiled with the optimization setting“-O2”. For
the latter the code was compiled with the setting “-fast”. The fourth cluster we used for
benchmarking was Seaborg [21], the 6,080-processor IBM SP at NERSC.

The results of our benchmarks are displayed in Figure 5. Overall, we find that Synergia
scales very well up to a certain scale set by the networking used in each case. The clear win-
ner in scaling is the specialized configuration found in Seaborg. The fastest Linux clusters,
however, showed overall superior performance. We can also see that Gigabit or Myrinet is
necessary for a Linux cluster to effectively take advantage of more than a few processors.
These tests were insufficient to distinguish between Gigabit and Myrinet. Somewhat sur-
prisingly, we also see that the Intel compiler produced significantly better performance than
the Portland compiler for our application.

Since for most medium-size applications we use the qcd80 cluster [22], we have optimized
the performance of our simulations for this machine. Figure 6 shows the scaling performance
we obtained on qcd80, for a FNAL Booster simulation on a 33× 33× 257 grid. We obtain
better scaling behavior in this case because we have optimized for the particular cluster and
simulation.

V. SYNERGIA TESTS AND APPLICATIONS

In order to verify the accuracy of our simulation we model several cases simple enough
to perform comparisons with semi-analytic calculations. We start with the case of a K-
V beam distribution in an idealized FODO channel[24]. Then, we compare the Synergia
prediction for the evolution of the second moments of a Gaussian beam distribution in a
FODO channel to the solution of the envelope equation. We also compare FODO channel
results from Synergia with another space-charge code. Finally, we compare the tune shifts
predicted by Synergia to that of the Laslett tune shift formula [15].

The first realistic application of Synergia has been to model the FNAL Booster [6] during
the first few hundred turns after injection. First, we study the incoherent tune shifts for
different beam currents. Then, we study patterns of halo formation quantitatively, as well
as qualitatively. Finally we examine emittance growth in various beam configurations.
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FIG. 5: Performance, defined as simulated Booster turns per hour, versus the number of processors

used, on various parallel machines.

A. Synergia Benchmarking

For a K-V distribution the charge density across the beam is constant and the forces
associated with space charge vary linearly with the coordinates x and y. The evolution
of the beam envelope can be calculated exactly by integrating the envelope equations [23].
As a first check, we compare the evolution of a K-V beam as predicted by Synergia to the
solution of the envelope equations:

σ′′x +Kxσx −
ε2rms

σ2
x

=
ξ

4(σx + σy)
(11)

and

σ′′y +Kyσy −
ε2rms

σ2
y

=
ξ

4(σx + σy)
, (12)

where ξ = 4Q2r0λ/(Aβ
2γ3), with Q the charge of a beam particle in units of e, r0 is the

classical proton radius, λ is the line charge density, A is the atomic number, Kx/y are the

focusing strengths, σx = 〈x2〉1/2, σy = 〈y
2〉1/2, and εrms is the unnormalized r.m.s. emittance:

εrms = 〈x
2〉〈p2〉 − 〈xp〉2 =

〈x2〉

βTwiss

. (13)
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FIG. 6: Performance, defined as simulated Booster turns per hour, versus the number of processors

used, on qcd80.

Note that the r.m.s. value of x in a K-V beam of radius a is given by 〈x2〉 = a2/4.
In Figure 7 we compare the numerical solution of Equations 11 and 12 to the Synergia

result for the FODO channel defined by the following MAD8 file:

scale=0.374749636

drs: drift, l=7.44d-2

drl: drift, l=14.88d-2

qd7: quadrupole, l=6.10d-2, k1=-38.64d0/scale

qf7: quadrupole, l=6.10d-2, k1= 38.64d0/scale

channel: line=(drs, qd7, drl, qf7, drs)

For this comparison we used a K-V beam with a kinetic energy 0.0067 GeV and two
dimensional transverse emittance 3.1×10−6 m rad in both the horizontal and vertical planes.
Figure 7.a shows the comparison of the calculated horizontal beam width for a matched
beam of 0.5 Amps. Figure 7.b shows the effects of taking into account space charge in the
matching procedure in the evolution of the horizontal beam width. The Synergia prediction
is consistent with the numerical solution of the envelope equations. The differences between
the curves in Figure 7.b are a measure of the magnitude of the space-charge effect.

In the case of a more realistic beam distribution, such as a Gaussian distribution, the
envelope equations can model the evolution of the second moments of the beam distribution
under the assumption that the emittance evolution is known [23]. In the cases presented here
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FIG. 7: (a) Comparison of the Synergia prediction for the horizontal beam evolution in the FODO

lattice described in the text to the solution of the envelope equations. (b) Effect of including space

charge in the matching condition, as predicted by Synergia.
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FIG. 8: (a) Comparison of the beam width evolution in a FNAL Booster cell as predicted by

Synergia and the solution of the envelope equations. (b) Effects of space charge on matching, as

predicted by Synergia. The insert shows the detail of these effects at the end of the cell.

we assume that the emittance remains constant. We compare the prediction of Synergia with
the prediction of the envelope equations for the evolution of the width of a Gaussian beam in
a lattice cell of the FNAL Booster [6]. Here we use a beam that is Gaussian in the transverse
coordinates and uniform in the longitudinal coordinate. The results are shown in Figure 8.a.
In Figure 8.b we show the effects of including space charge in the matching condition, as
predicted by Synergia. The current used in this simulation is a typical operating current for
the machine. In this case the space-charge effect is small for the r.m.s. width change in one
Booster cell. Traversing a single cell is a tiny fraction of the entire cycle in which the beam
passes through 480,000 cells.

As our final exercise in modeling beam envelopes, we compare Synergia with the
MaryLie/IMPACT (ML/I) code [7]. The comparison is done for two cases:
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FIG. 9: Comparison of the Synergia and MaryLie/IMPACT predictions for the horizontal r.m.s.

beam size of a K-V beam propagating in the FODO channel (case 1) described in the text as a

function of s.

1. the FODO channel described above, using a 0.5 A matched K-V beam with two-
dimensional transverse emittance of 1.0× 10−6 m rad in both planes.

2. a 0.1 A cold proton beam in a FODO channel with rf cavities.

For each of these comparisons we used a common input file of beam particles for both the
Synergia and ML/I simulations. In Figure 9 we show the comparison of the horizontal
r.m.s. beam size predictions from the two codes for case 1. The agreement is very good.
The difference between the prediction of the two simulations for the r.m.s. width of the
beam at the end of the channel is 0.27%. This slight variation in the final answer is due to
minor differences in the implementation of the Poisson solver and differences in the problem
description in the simulation, such as the number of slices used in the split-operator particle
advance algorithm.

In figure 10 we show the results for case 2. The agreement between the two codes is
excellent. In this case, we model a cold, uniform density, 100 mA proton beam, with kinetic
energy of 250 MeV, in a FODO channel with rf cavities. The channel consists of two 0.15 m
focusing quadrupoles (fquad), with a gradient of 6 T/m, a 0.30 m defocusing quadrupole
(dquad), with -6 T/m gradient, four 0.10 m drifts (dr), and two 1 m rf cavities (cav), with
frequency 700 MHz. The rf cavities are treated by computing the linear transfer maps,
including the effects of acceleration, and using numerical integration of the map coefficients.
This requires a knowledge of the on-axis electric field and its derivative. For this example,
the functional form of the field is given by E(z) = E0 cos(ωt+φ). The beamline is arranged
in the following way: (fquad dr cav dr dquad dr cav dr fquad). The cavity phases have
been set so that the first cavity accelerates the beam and the second decelerates it by the
same amount. Since the beam is cold, the rms equations describe the problem exactly, as
long as the beam remains cold and uniform, so there is a matched condition where the
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envelopes of a cold beam propagating in the FODO channel with rf cavities (case 2) described in

the text.

final envelopes are identical to the initial values. We used a 3D envelope matching code to
find the matched beam parameters. We generated a numerical realization of the matched
uniform distribution consisting of 100,000 particles. These particles were used as the input
of both Synergia and ML/I.

Another simple comparison we can make with analytic calculations is to compare the
Laslett tune shift for a K-V beam with results from a Synergia simulation. We use the
formula

∆ν =
−Nr0

8πβ2γ3εrms

, (14)

where N is the number of particles in the beam, r0 is the classical proton radius and εrms is
the unnormalized r.m.s. emittance as defined in Equation 13. The Synergia prediction for
the tune shift is obtained by taking the peak of the Fourier transform of the horizontal and
vertical position of individual particles, as a function of s, sampled each cell (24 times per
turn) for 100 turns. Here s is the coordinate along the path of the reference trajectory. By
sampling each cell, we are able to extract the integer portion of the tune. Sampling once
per turn is sufficient to extract the fractional tune. In Figure 11 we show the comparison
between the results from Equation 14 and Synergia for the FNAL Booster (“bare” lattice,
as described above) and for different beam currents. The agreement is very good; we thus
conclude that Synergia can reliably reproduce analytical calculations of space-charge effects.

B. Application to the FNAL Booster

In this section we present initial results from Synergia studies of beam behavior in the
FNAL Booster during the first few hundred turns after injection. A more detailed study of
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FIG. 11: Comparison of the horizontal and vertical tune shifts calculated using Synergia and using

equation 14.

the interplay between single particle optics effects and space-charge effects will follow in a
separate publication.

The Booster is a rapid-cycling, 15 Hz, alternating gradient synchrotron with a radius
of 75.47 meters. The lattice consists of 96 combined function magnets in 24 periods, with
nominal horizontal and vertical tunes of 6.9 and 6.7 respectively. The Booster accelerates
protons from a kinetic energy of 400 MeV to 8 GeV, at harmonic number h = 84, using 17
RF cavities with frequency that slews from 37.7 MHz at injection to 52.8 MHz at extraction.
The nominal average current at injection is ∼ 42 mA. Typically, the injection process lasts
for ten Booster turns. The injected beam is a stream of bunches equally spaced at the
linac [13] RF frequency of 201.2 MHz.

There are many factors affecting the behavior of the Booster beam, including the energy
spread and emittance of the injected beam, nonlinear field errors and space-charge effects.
The space-charge effects have long been believed to be responsible for a significant fraction
of the observed losses in the Booster [14] during the first 2 ms of the cycle (the injection,
capture, and bunching phases). In this section we present a rudimentary study of these
effects in an idealized Booster; we will examine these effects in greater detail in a subsequent
paper. For all of the calculations in this paper we have used an idealized “bare” Booster
lattice without any non-linear elements. We defer the inclusion of effects such as magnet
offsets, correctors, etc., to a future study.

As our first example, we consider the transverse tune spread due to space charge, using
a Booster lattice without nonlinear beamline elements and without the complications of
multi-turn injection, but with realistic input beam parameters. The initial beam used in
the simulation is a 6-dimensional Gaussian distribution, with the appropriate correlations
to match it to the Booster lattice, accounting for space-charge effects. The horizontal and
vertical r.m.s. emittance was 3.05 × 10−6 m rad. The full current was injected in a single
turn and second order maps were used for the single particle optics. The momentum spread,
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∆p/p, was 0.0003. We used 96 space-charge kicks per turn, calculated on a 33 × 33 × 257
computational grid with an average of four particles per grid cell. We followed the beam for
100 turns after injection, recording particle information once per space-charge kick. In this
comparison, we used currents of 0, 0.105, 0.210, 0.420, 0.630 and 0.840 Amps. As stated
previously, the nominal Booster current is 0.420 Amps.

We compare the Synergia results with the results from the Laslett tune shift formula [15]
for a Gaussian beam,

∆ν =
−Nr0

4πβ2γ3εrms

. (15)

Note that the above tune shift for a Gaussian beam is a factor of two larger than the tune
shift for a K-V beam in Equation 14.

In order to quantitatively study the spread of tune shifts in the two-dimensional transverse
tune space, we introduce the concept of generalized two-dimensional r.m.s. ellipse. The
ellipse is given by taking the covariance matrix

C =

(

〈x2〉 − 〈x〉2 〈xy〉 − 〈x〉〈y〉
〈xy〉 − 〈x〉〈y〉 〈y2〉 − 〈y〉2

)

, (16)

decomposing into
C = RRT , (17)

where R is lower diagonal. The ellipse is then parameterized by
(

x
y

)

= R

(

sin θ
cos θ

)

+

(

〈x〉
〈y〉

)

. (18)

For the case of tune spreads, we take x to be the horizontal tune and y to be the vertical
tune. The resulting r.m.s ellipse is a model-independent, statistically robust representation
of the spread of the majority of the particle tunes.

The results for the different beam currents are summarized in Figure 12, which shows the
transverse tune spread together with the corresponding generalized two-dimensional r.m.s.
ellipses of the horizontal and vertical tunes. The tune spread is obtained by taking the
peak of the Fourier transform of the horizontal and vertical position of individual particles,
as a function of s, sampled 24 times per turn for 100 turns. Note that the tune footprint
plot shows the extent of the distribution but not the density of the points, which is better
represented by the two-dimensional r.m.s. ellipses. The filled squares in the figure correspond
to the prediction from the Laslett formula for the corresponding beam current (“nominal”
refers to the tune prediction for the zero current case).

The generalized two-dimensional r.m.s. ellipse
Since the Laslett formula predicts tune shifts for particles at the core of a stationary beam

its prediction is an upper limit of what we observe in the self-consistent particle simulation.
Particles away from the center of the distribution experience smaller space-charge forces.

As a second example, we study the formation of halo in the case of mismatched beam.
In Figure 13 we plot the kurtosis[25]

k ≡

〈

(x− 〈x〉)4
〉

〈

(x− 〈x〉)2
〉2
− 3 (19)

of the beam distribution in each transverse plane as a function of s. The beam parameters
are as described above, with a beam current of 0.420 Amps. We ran four different cases,

16



 6.25

 6.3

 6.35

 6.4

 6.45

 6.5

 6.55

 6.6

 6.65

 6.7

 6.75

 6.5  6.6  6.7  6.8  6.9  7

ve
rt

ic
al

 tu
ne

horizontal tune

I = 0.840 A

I = 0.420 A

I = 0.210 A
I = 0.105 A

nominal

FIG. 12: Transverse tune spread calculated by Synergia, compared to the Laslett tune shift formula.

The green circles correspond to a current of 0.105 Amps, the blue square symbols to 0.210 Amps,

the black stars to 0.420 Amps and the red x’s to 0.840 Amps. The definition of the ellipses is given

in the text. The arrows point to the tune predicted by the Laslett formula for each current.

varying the initial beam conditions: matched beam with and without momentum spread for
single-turn injection, and 20% mismatched beam with momentum spread (∆p/p = 0.0003)
for single- and multi-turn injection. For these simulations the lattice does not include any
non-linear elements, but since we use second order transfer maps we expect chromatic effects
to contribute to halo creation for non-zero momentum spread. In the cases with mismatch,
the beam has been mismatched in both planes by stretching the width by a factor of 1.2
and adjusting the conjugate momentum distribution to maintain the original emittance.

We observe that in the matched beam cases, the kurtosis is close to zero and that non-zero
momentum spread has a small effect in the horizontal and no effect in the vertical plane.
The reason for the small difference in the horizontal is due to our matching procedure: we
first match the beam correlations for the presence of dispersion, and then we match for the
presence of space charge, neglecting any interaction between the two effects. This results in a
small residual mismatch in the horizontal (non-zero dispersion) plane. Note that a Gaussian
distribution has k = 0. A distribution with k > 0 is known as leptokurtic, while a distribution
with k < 0 is known as platykurtic. In the case of the mismatched beam, the simulation
quickly converges to a leptokurtic distribution, an indication of the halo formation. The
multi-turn injection case shows a smaller increase in kurtosis than the single-turn case since
the space-charge effects turn on gradually, resulting in a painting effect. We note that the
authors of Ref. [17] use the same method to identify halo formation, except that they define
a new parameter h, the “spatial-profile parameter.” The spatial-profile parameter is related
to kurtosis by h = k + 1.

In order to present a qualitative measure of the amount of halo created in the above
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FIG. 14: Horizontal (x vs. x′) phase-space plot for the mismatched beam case. (a) Beam in the

beginning of the simulation, (b) after 100 turns.

simulations, we plot two dimensional phase space projections of the mismatched beam in
both the transverse and longitudinal planes. Note that for the transverse phase space plots
we use normalized coordinates, where x and y are scaled by l = c/w, with c the speed of
light and w the angular frequency, and x′ and y′ are scaled by mc, where m is the proton
mass. Figures 14 and 15 show the evolution of the horizontal and vertical phase spaces,
while Figure 16 shows the evolution of a slice of the longitudinal phase space. The transverse
phase space plots give a qualitative picture of halo formation. The longitudinal phase space
plots show the transition from the bunched injected beam through debunching to a DC
beam. The simulated injected beam models a realistic Booster beam at injection which is
bunched according to the 200 MHz Linac rf. The phase space slice in Figure 16 corresponds
to a full period of the 200 MHz rf.
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beginning of the simulation, (b) after 100 turns.
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in the beginning of the simulation, (b) after 3 turns, and (c) after 100 turns.

Finally, we investigate how space-charge and chromatic effects affect the emittance of the
Booster. In Figure 17 we plot the normalized 4-D transverse emittance[26] for five different
initial beam conditions, described in the caption of the figure. As expected, in the cases
where the beam was matched there is no emittance growth. That is the case for both zero
and non-zero momentum spread, and for space charge. (Our matching procedure takes
into account space-charge effects on the second moments of the beam). In the mismatched
cases we observe a 12% increase of the beam emittance during the first 10 to 15 turns after
injection. The effect is a combination of chromatic and space-charge effects and it is very
similar for both the single- and multi-turn injection cases. The total current is the same,
0.420 Amps, in both cases.

VI. CONCLUSIONS

In this paper we presented Synergia, a package for simulation of linear and circular
accelerators with self-consistent treatment of space charge and the ability to use arbitrary
order transfer maps for modeling single-particle optics. Synergia provides the tools necessary
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for non-expert users to easily port and use the package. The user interface takes advantage of
the flexibility of Python to provide a complete and highly configurable system. The parallel
implementation allows us to perform large scale simulations on modern supercomputers and
clusters. We have verified the accuracy of our implementation by comparing Synergia to
semi-analytic results and other codes.

In our initial application of Synergia, we studied beam behavior during the first hundred
turns after injection in the Fermilab Booster. We calculated the particle tune spread and
found that the majority of the particles experience a tune shift much smaller than that
predicted by the Laslett formula. We also studied some mechanisms of beam halo creation
and emittance growth. We used the kurtosis of the beam distribution as a quantitative
measure of halo production. We found that if the injected beam is matched including space-
charge effects there is no apparent emittance growth or halo creation. In the case of a
mismatched beam, we found that both chromatic and space-charge effects are important
in creating halo and emittance growth. A more detailed study of such effects and their
dependence on initial conditions will follow in a future paper.
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